Binomial formula

Acquainted yourself first with a character : n ! \rightarrow where "!" is the factorial operator.

$$
n!=n \circ(n-1) \circ(n-2) \circ \ldots \circ 3 \circ 2 \circ 1
$$

Example:

$$
5!=5 \circ 4 \circ 3 \circ 2 \circ 1=120 \quad \text { or } \quad 7!=7 \circ 6 \circ 5 \circ 4 \circ 3 \circ 2 \circ 1=5040
$$

By definition, is $\quad 0!=1$
In tasks we often use to separate the factorial as a product of few members and new factorial.
For example:

$$
\begin{aligned}
& (\mathrm{n}+2)!=(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{n}(\mathrm{n}-1) \circ \ldots \circ 2 \circ 1 \\
& (\mathrm{n}+2)!=(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{n}! \\
& (\mathrm{n}+2)!=(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{n}(\mathrm{n}-1)!
\end{aligned} \text { or } \quad \text { or } \ldots . .
$$

Example 1. Reduce the fraction:

$$
\frac{(n-1)!}{(n-3)!}
$$

Solution: $\quad \frac{(n-1)!}{(n-3)!}=\frac{(n-1)(n-2)(n-3)!}{(n-3)!}=(\mathrm{n}-1)(\mathrm{n}-2)$

Example 2. Solve the equation:

$$
\frac{(2 x)!}{(2 x-3)!}=\frac{20 x!}{(x-2)!}
$$

Solution:

$$
\begin{aligned}
\frac{(2 x)!}{(2 x-3)!} & =\frac{20 x!}{(x-2)!} \\
\frac{(2 x)(2 x-1)(2 x-2)(2 x-3)!}{(2 x-3)!} & =\frac{20 x(x-1)(x-2)!}{(x-2)!} \\
(2 \mathrm{x})(2 \mathrm{x}-1)(2 \mathrm{x}-2) & =20 \mathrm{x}(\mathrm{x}-1) \\
2 \mathrm{x}(2 \mathrm{x}-1) 2(\mathrm{x}-1) & =20 \mathrm{x}(\mathrm{x}-1) \\
2 \mathrm{x}-1 & =5 \quad \text { and from here is } \quad \mathrm{x}=\mathbf{3}
\end{aligned}
$$

$\binom{n}{k}$-is interpreted as the number of k-element subsets of an n-element set, that is the number of ways that k things can be "chosen" from a set of n things.
$\binom{n}{k}$ is often read as " \boldsymbol{n} choose \boldsymbol{k} " and called the choose function of n and k.

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!}
$$

Examples: $\quad\binom{10}{2}=\frac{10 \circ 9}{2 \circ 1}=45 \quad, \quad\binom{15}{3}=\frac{15 \circ 14 \circ 13}{3 \circ 2 \circ 1}=455$

To have the speed in the work we have to remember that:

$$
\begin{aligned}
& \binom{n}{0}=1 \quad \text { For example : } \quad\binom{5}{0}=1 \quad\binom{12}{0}=1 \quad \ldots . . \\
& \binom{n}{n}=1 \quad \text { For example : } \quad\binom{7}{7}=1 \quad\binom{100}{100}=1 \\
& \binom{n}{1}=\binom{n}{n-1}=n \quad \text { For example: } \quad\binom{4}{1}=\binom{4}{3}=4 \quad\binom{50}{1}=\binom{50}{49}=50
\end{aligned}
$$

And most important: $\quad\binom{n}{k}=\binom{n}{n-k}$
For example, we get to decide $\binom{20}{18}$.With this policy we resolve:

$$
\binom{20}{18}=\binom{20}{2}=\frac{20 \circ 19}{2 \circ 1}=190 . \text { It is easier! }
$$

Now we can see how it seems binomial form:

$$
\mathbf{(a + b})^{\mathbf{n}}=\binom{n}{0} \mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{0}}+\binom{n}{1} \mathbf{a}^{\mathbf{n}-\mathbf{1}} \mathbf{b}^{\mathbf{1}}+\binom{n}{2} \mathbf{a}^{\mathbf{n}-\mathbf{2}} \mathbf{b}^{\mathbf{2}}+\ldots+\binom{n}{n-1} \mathbf{a}^{\mathbf{1}} \mathbf{b}^{\mathbf{n}-\mathbf{1}}+\binom{n}{n} \mathbf{a}^{\mathbf{0}} \mathbf{b}^{\mathbf{n}}
$$

This formula can be easily proved by the application of mathematical induction.

What is important to notice?

- The development has always $n+1$ members
- a begins with the degree \mathbf{n}, and any member of the following decreases until it comes to zero, while \mathbf{b} starts from zero, and each member of the next growing until come to the degree \mathbf{n}
$-\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}$ and $\binom{n}{n}$ are the binomial coefficients, and for them we have one interesting thing:

Paskal triangle

$$
\begin{aligned}
& (\mathbf{a}+\mathbf{b})^{\mathbf{0}}=\mathbf{1} \quad \text { coefficient } \mathbf{1} \quad 1 \\
& (\mathbf{a}+\mathbf{b})^{\mathbf{1}}=\mathbf{a}+\mathbf{b} \quad \text { coefficients are } \quad \mathbf{1} \text { and } \mathbf{1} \quad 1 \quad 1 \\
& (\mathbf{a}+\mathbf{b})^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}+\mathbf{2 a b}+\mathbf{b}^{\mathbf{2}} \quad \text { coefficients are } \mathbf{1 , 2 , 1}} \begin{array}{llll}
1 & 2 & 1
\end{array} \\
& (\mathbf{a}+\mathbf{b})^{\mathbf{3}}=\mathbf{a}^{\mathbf{3}+\mathbf{3 a} \mathbf{a}^{\mathbf{2}} \mathbf{b}+\mathbf{3 a b} \mathbf{b}^{\mathbf{2}}+\mathbf{b}^{\mathbf{3}} \quad \text { coefficients are } \mathbf{1 , 3 , 3}, \mathbf{1}} \quad 1 \quad 3 \quad 3 \quad 1 \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& 11 \\
& \text { coefficients are } 1,4,6,4,1 \text { etc.. }
\end{aligned}
$$

1

General (any) member in the form of a developed stage is required by the formula:

$$
\mathbf{T}_{\mathbf{k}+1}=\binom{n}{k} \mathbf{a}^{\mathrm{n}-\mathbf{k}} \mathbf{b}^{\mathbf{k}}
$$

EXAMPLES:

1) $(3+2 x)^{5}=$?

$$
\begin{aligned}
& (3+2 x)^{5}=[\text { Here is } a=3, \quad b=2 x \text { and } n=5] \\
& \binom{5}{0} 3^{5}(2 x)^{o}+\binom{5}{1} 3^{4}(2 x)^{1}+\binom{5}{2} 3^{3}(2 x)^{2}+\binom{5}{3} 3^{2}(2 x)^{3}+\binom{5}{4} 3^{1}(2 x)^{4}+\binom{5}{5} 3^{o}(2 x)^{5}
\end{aligned}
$$

it's easier to extract the binomial coefficients, and fix them first:

$$
\begin{aligned}
& \quad\binom{5}{0}=\binom{5}{5}=1 \\
& \quad\binom{5}{1}=\binom{5}{4}=5 \\
& \qquad\binom{5}{2}=\frac{5 \cdot 4}{2 \cdot 1}=10=\binom{5}{3} \\
& =1 \cdot 3^{2} \cdot 1+5 \cdot 3^{4} \cdot 2 \cdot x+10 \cdot 3^{3} \cdot 2^{2} x^{2}+10 \cdot 3^{2} \cdot 2^{3} \cdot x^{3}+5 \cdot 3 \cdot 2^{4} \cdot x^{4}+1 \cdot 1 \cdot 2^{5} \cdot x^{5}= \\
& =243+810 x+1080 x^{2}+720 x^{3}+240 x^{4}+32 x^{5}
\end{aligned}
$$

2) $(1+i)^{6}=$?

$$
\begin{aligned}
& (1+i)^{6}=[\text { Here is } a=1, b=i \text { and } n=6] \\
& \binom{6}{0} 1^{6} \cdot i^{o}+\binom{6}{1} 1^{5} \cdot i^{1}+\binom{6}{2} 1^{4} \cdot i^{2}+\binom{6}{3} 1^{3} \cdot i^{3}+\binom{6}{4} 1^{2} \cdot i^{4}+\binom{6}{5} 1^{1} \cdot i^{5}+\binom{6}{6} 1^{o} \cdot i^{6} \\
& \binom{6}{0}=\binom{6}{6}=1 \\
& \binom{6}{1}=\binom{6}{5}=6 \\
& \binom{6}{2}=\frac{6 \cdot 5}{2 \cdot 1}=15=\binom{6}{4} \\
& \binom{6}{3}=\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}=20
\end{aligned}
$$

To remind you:

$$
\left.\begin{array}{l}
i^{1}=i \\
i^{2}=-1 \\
i^{3}=-i \\
i^{4}=1
\end{array}\right\} \text { So: } \quad \begin{aligned}
& i^{5}=i^{4} \cdot i=i \\
& i^{6}=i^{4} \cdot i^{2}=-1
\end{aligned}
$$

Let's go back to the task:

$$
\begin{aligned}
& =1 \cdot 1 \cdot 1+6 \cdot 1 \cdot i+15 \cdot 1 \cdot(-1)+20 \cdot 1 \cdot(-i)+15 \cdot 1 \cdot 1+6 \cdot i+1 \cdot 1(-1) \\
& =1+6 i \cdot 15-20 i+15+6 i-1 \\
& =-8 i
\end{aligned}
$$

$$
\text { So: } \quad(1+i)^{6}=-8 i
$$

3) Determine the fifth member in the form of a developed stage: $\left(x^{\frac{1}{2}}+x^{\frac{2}{3}}\right)^{12}$

Solution:

$$
a=x^{\frac{1}{2}}, b=x^{\frac{2}{3}}, n=12
$$

We will use formula:

$$
T_{k+1}=\binom{n}{k} a^{n-k} b^{k}
$$

As the search is for the fifth member:

$$
\begin{aligned}
T_{5} & =T_{4+1} \\
& =\binom{12}{4}\left(x^{\frac{1}{2}}\right)^{12-4}\left(x^{\frac{2}{3}}\right)^{4} \\
& =\binom{12}{4} x^{4} \cdot x^{\frac{8}{3}} \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} x^{4+\frac{8}{3}} \\
& =495 \cdot x^{\frac{20}{3}}
\end{aligned}
$$

4) Determine member that does not include x in developed form of $\left(x+x^{-2}\right)^{12}$

Solution:

$$
a=x, \quad b=x^{-2}, \quad n=12
$$

We will use formula $T_{k+1}=\binom{n}{k} a^{n-k} b^{k} \quad$ to find k

$$
\begin{aligned}
& T_{K+1}=\binom{n}{k} a^{n-K} \cdot b^{K} \\
& =\binom{12}{k} x^{12-k}\left(x^{-2}\right)^{k} \\
& =\binom{12}{k} x^{12-k} \cdot x^{-2 k} \\
& =\binom{12}{k} x^{12-3 k}
\end{aligned}
$$

Since we need a member that does not contain \mathbf{x}, carried out by comparison:

$$
\begin{aligned}
& x^{12-3 k}=x^{o} \\
& 12-3 k=0 \\
& 3 k=12 \\
& k=4
\end{aligned}
$$

So, in question was $\left(T_{4+1}=T_{5}\right)$ the fifth member. $T_{k+1}=\binom{12}{k} x^{12-3 k} \rightarrow T_{5}=\binom{12}{4}$
5) The sum of coefficient of the first, second and third member in the development stage of $\left(x^{2}+\frac{1}{x}\right)^{n}$ is 46 .

Find a member that does not contain x .

Solution:

$$
\begin{aligned}
& \binom{n}{0}+\binom{n}{1}+\binom{n}{2}=46 \\
& 1+n+\frac{m(n-1)}{2}=46 \\
& 2+2 n+n^{2}-n=92 \\
& n^{2}+n-90=0 \\
& n_{1,2}=\frac{-1 \pm 9}{2} \\
& n=9
\end{aligned}
$$

So: $\quad a=x^{2}, \quad b=\frac{1}{x}, n=9$

$$
\begin{aligned}
& T_{K+1}=\binom{n}{k} a^{n-K} \cdot b^{K} \\
& =\binom{9}{k}\left(x^{2}\right)^{9-k}\left(\frac{1}{x}\right)^{k} \\
& =\binom{12}{k} x^{18-k} \cdot x^{k} \\
& =\begin{array}{l}
18-3 k \\
18-3 k=0 \\
\\
=\binom{12}{k} x^{18-3 k} \\
\end{array} \\
& k=6=18 \\
& k
\end{aligned}
$$

Means that there is a seventh member.

$$
T_{7}=\binom{9}{6}=\binom{9}{3}=\frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1}=84
$$

6) Find the coefficients with x^{3} in developed stage $\left(\frac{1}{4 x}-2 x^{2}\right)^{12}$

Solution:

$$
\begin{aligned}
& a=\frac{1}{4 x}, b=-2 x^{2}, n=12 \\
& T_{K+1}=\binom{n}{k} a^{n-K} \cdot b^{K} \\
& =\binom{12}{k}\left(\frac{1}{4 x}\right)^{12-k} \cdot\left(-2 x^{2}\right)^{k} \\
& =\binom{12}{k}\left(\frac{1}{4}\right)^{12-k} x^{k-12} \cdot(-2)^{k} \cdot x^{2 k} \\
& =\binom{12}{k}\left(\frac{1}{4}\right)^{12-k} \cdot(-2)^{k} \cdot \underbrace{x^{3 k-12}}_{x^{3}}
\end{aligned}
$$

So: $\quad x^{3 k-12}=x^{3}$

$$
\begin{aligned}
& 3 k-12=3 \\
& 3 k=15 \\
& k=5
\end{aligned}
$$

And the coefficients with x^{3} will be:

$$
\begin{aligned}
& \binom{12}{k}\left(\frac{1}{4}\right)^{12-k}(-2)^{k}
\end{aligned}=\begin{aligned}
\binom{12}{5}\left(\frac{1}{4}\right)^{7} \cdot(-2)^{5} & =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{1}{4^{7}} \cdot(-32) \\
& =-\frac{99}{64}=-1,546875
\end{aligned}
$$

7) We have $\binom{n}{1}:\binom{n}{2}=2: 11$ and $\left(\frac{x}{\sqrt{4}}+\frac{\sqrt{y}}{x}\right)^{n}$. Determine the fifth member.

Solution:

$$
\begin{aligned}
& \binom{n}{1}:\binom{n}{2}=2: 11 \\
& n: \frac{n(n-1)}{2}=2: 11 \\
& 11 n=n(n-1) \\
& 11 n=n^{2}-n \\
& n^{2}-12 n=0 \\
& n(n-12)=0 \Rightarrow \underset{\substack{n=0 \\
\text { not } a \text { solution }}}{n} \vee n=12
\end{aligned}
$$

Because $a=\frac{x}{\sqrt{4}}, b=\frac{\sqrt{y}}{x}, n=12$ and we must find the fifth member:

$$
\begin{aligned}
& T_{K+1}=\binom{n}{k} a^{n-K} \cdot b^{K} \\
& T_{K+1}=\binom{n}{k} a^{n-K} \cdot b^{K} \\
& T_{5}=T_{4+1}=\binom{12}{4}\left(\frac{x}{\sqrt{y}}\right)^{8} \cdot\left(\frac{\sqrt{y}}{x}\right)^{4} \\
& =\binom{12}{4} \frac{x^{8}}{y^{4}} \cdot \frac{y^{2}}{x^{4}} \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{x^{4}}{y^{2}} \\
& =495 x^{4} y^{-2}
\end{aligned}
$$

8) At the railway station should be received in the same direction n people. On how many possible ways, considering the time of arrival, thay can arrive at the station?

Solution:

Think:

- Can all came at different time
- To arrive two together, the other in a different time
- To arrive three together, the other in a different time
- Etc.
- To arrive in groups 2
- To arrive in groups of 3
- itd - Etc.

Number of all the possibilities:
$C_{1}^{n}+C_{2}^{n}+C_{3}^{n}+\ldots+C_{n}^{n}=$
$\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\ldots+\binom{n}{n}=$
To calculate this, let us start from binomial formula :

$$
(a+b)^{n}=\binom{n}{o} a^{n} b^{o}+\binom{n}{1} a^{n-1} b^{1}+\ldots+\binom{n}{n} a^{o} b^{n}
$$

If instead of \mathbf{a} and \mathbf{b} put $\mathbf{1}$, you will receive:

$$
\begin{aligned}
& (1+1)^{n}=\binom{n}{o} \cdot 1 \cdot 1+\binom{n}{1} \cdot 1 \cdot 1+\ldots+\binom{n}{n} \cdot 1 \cdot 1 \\
& 2^{n}=\binom{n}{o}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n} \\
& \binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}-\binom{n}{o} \\
& \binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}-1
\end{aligned}
$$

Number of possibilities : $2^{n}-1$

